Reduced-Order Nonlinear Unsteady Aerodynamic Modeling Using a Surrogate-Based Recurrence Framework
نویسندگان
چکیده
A reduced-order nonlinear unsteady aerodynamic modeling approach suitable for analyzing pitching/plunging airfoils subject to fixed or time-varying freestream Mach numbers is described. The reduced-order model uses kriging surrogates to account for flow nonlinearities and recurrence solutions to account for time-history effects associated with unsteadiness. The resulting surrogate-based recurrence framework generates time-domain predictions of unsteady lift, moment, and drag that accurately approximate computational fluid dynamics solutions, but at a fraction of the computational cost. Results corresponding to transonic conditions demonstrate that the surrogate-based recurrence framework can mimic computational fluid dynamics predictions of unsteady aerodynamic responses when flow nonlinearities are present. For an unsteady aerodynamic modeling problem considered in this study, an accurate reduced-order model was generated by the surrogate-based recurrence framework approach with significantly fewer computational fluid dynamics evaluations compared to results reported in the literature for a similar problem in which a proper-orthogonal-decomposition-based approach was applied. Furthermore, the results show that the surrogate-based approach can accurately model time-varying freestream Mach number effects and is therefore applicable to rotary-wing applications in addition to fixed-wing applications.
منابع مشابه
Numerical Simulation and Parametric Reduced Order Modeling of the Natural Convection of Water-Copper Nanofluid
In this article, a coupled computational framework is presented for the numerical simulation of mass transfer under the effects of natural convection phenomena in a field contains water-copper Nano-fluid. This CFD model is build up based on accurate algorithms for spatial derivatives and time integration. The spatial derivatives have been calculated using first order upwind and second order cen...
متن کاملRecent Enhancements to the Development of CFD-Based Aeroelastic Reduced-Order Models
Recent enhancements to the development of CFD-based unsteady aerodynamic and aeroelastic reduced-order models (ROMs) are presented. These enhancements include the simultaneous application of structural modes as CFD input, static aeroelastic analysis using a ROM, and matched-point solutions using a ROM. The simultaneous application of structural modes as CFD input enables the computation of the ...
متن کاملDevelopment of Unsteady Aerodynamic and Aeroelastic Reduced-order Models Using the Fun3d Code
Recent significant improvements to the development of CFD-based unsteady aerodynamic reduced-order models (ROMs) are implemented into the FUN3D unstructured flow solver. These improvements include the simultaneous excitation of the structural modes of the CFD-based unsteady aerodynamic system via a single CFD solution, minimization of the error between the full CFD and the ROM unsteady aerodyna...
متن کاملNonlinear Aeroelastic Modeling and Analysis of Fully Flexible Aircraft
This paper introduces an approach to effectively model the nonlinear aeroelastic behavior of fully flexible aircraft. The study is conducted based on a nonlinear strainedbased finite element framework in which the developed low-order formulation captures the nonlinear (large) deflection behavior of the wings, and the unsteady subsonic aerodynamic forces acting on them. Instead of merely conside...
متن کاملUnsteady aerodynamic models for agile flight at low Reynolds numbers
The goal of this work is to develop low-order models for the unsteady aerodynamic forces on a small wing in response to agile maneuvers and gusts. In a previous study, it was shown that Theodorsen’s and Wagner’s unsteady aerodynamic models agree with force data from DNS for pitching and plunging maneuvers of a 2D flat plate at Reynolds numbers between 100 and 300 as long as the reduced frequenc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010